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Probability Distribution Connected with Structure Amplitudes 
of two Related Crystals. III. 

Probability Distribution of the Quotient 
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This par t  deals wi th  the  theory  of the probabi l i ty  dis tr ibut ion of the  quot ient  of the  s t ructure  
ampl i tudes  of a pair  of crystals,  and  forms a cont inuat ion of the  earlier two par ts  wherein the  
dis t r ibut ion of the difference and  the product  were considered. The dis tr ibut ion of the  quot ient  is 
found to be marked ly  different for related and  unrela ted crystals  and this  proper ty  enables one 
to use the  function for tes t ing isomorphism or relatedness in practice. Expl ici t  expressions for the 
quan t i t y  P+ defined in par t  I are derived from the  dis tr ibut ion of the quotient .  Certain other  
interest ing properties exhibi ted by  the quot ient  distr ibution,  such as the equivalence of the distribu- 
t ion of the normalized quot ient  and  its reciprocal, are also considered. 

1. Introduct ion 

In  parts I and I I  of this series (Ramachandran, 
Srinivasan & Raghutiathy Sarma, 1963; Srinivasan, 
Raghupathy Sarma & Ramachandran,  1963a) the 
theory of the probabili ty distribution of the X-ray 
intensities belonging to a pair of crystals was devel- 
oped. The distribution of the difference of the struc- 
ture amplitudes was considered in part  I while par t  I I  
was chiefly concerned with the distribution of the 
product. The possible application of the results for 
testing 'isomorphism' or 'relatedness' in actual 
practice was pointed out earlier (part I) and further 
quanti tat ive criteria were developed for this purpose 
(part II). A more detailed account of these appeared 
in a later publication (Srinivasan, Raghupathy Sarma 
& Ramaehandran,  1963b, hereafter referred to as SRR) 
wherein some results of practical tests of the various 
results were also reported. 

During the course of the above investigations it  
occurred to the authors tha t  it  would be of interest 
to work out the distribution of the quotient of the 
structure amplitudes under conditions and assump- 
tions identical with those in parts I and II.  The 
present paper is mainly concerned with this problem. 
As in the earlier parts, the theory is worked out both 
for centro~ymmetric ~nd for non-ccntro~ymmetri¢ 
cases, corresponding to the two situations, namely 
when the two crystals are unrelated and related 
respectively. 

I t  is found tha t  the curves of the distribution of 
the quotient exhibit a marked difference in their 
nature for the related and unrelated cases and in this 
respect they  are similar to the P(w) function con- 
sidered in par t  I. This enables us to use these curves 
also for testing isomorphism or relatedness in practice. 
The other interesting aspect of the quotient distribu- 
tion arises purely from a theoretical viewpoint. For 

instance, it  is found tha t  the quotient and its reciprocal 
(properly normalized) have identical distributions. 
These will be discussed in detail in § 3. Explicit  
expressions are also given for the quant i ty  P+ defined 
in par t  I, for the related and unrelated cases. These 
have been derived by means of the expressions for 
the quotient distribution. 

The various formulae are derived in the next  
section, while § 3 will be devoted to a discussion of 
the results. 

The notation used in this paper follows closely 
tha t  of the earlier parts. 

2. Derivat ion of the formulae  
To obtain the distribution of the quotient we use 
the general theorem tha t  if x and y are random 
variables, the distribution of the quotient z=y/x is 
given by 

P(z) = l Pl(x)P2(zx; x) x dx (1) 

where P~(x) is the probabili ty density function for x 
and P2(y; x) is the conditional probabili ty density 
function for y, for a given value of x. 

2"1, The ca6c of rdated 6tructure amplitude6 
(a) Non-centrosymmetric case 

Let us define q=  IFM/IFP]. The distribution of q 
is given by 

e(q)  = PI(IFPI)P2(qlF~I ; IF~I)IFPIdlFPI (2) 
o 

where PI(IF~I) and P2(IF~rl;IF~I) are given by  (see 
part  I) 

Px(IF~I) = a--~p exp - ~ j (3) 
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- -oxri- f 0 4 / (4) 

Here (r~v, (r~ and (rQ represent the root mean square 
values of the structure amplitudes IF~v], IF~I and ]FQI 
respectively. Substituting these in (2) we obtain 

I~° 4qlFp} a { [IF~I* (q*tFpl* + IFpI*))} P(q)= , e exp - + 
o (r~(re \ - ~  4 

{2qlF~,12\ 
x /0  \---~Q--) dlFM. (5) 

The above integral can be evaluated (see Appendix I) 
and it reduces to 

2q (r2p (r~ ( (r2~v + a2p qe) 
P(q) = [((r~ + (r~q2)~_44q~]a/~ . (6) 

I t  is convenient at  this stage to change the variable 
to its normalized form, namely, 

Y~ IF~] (rP (re 
v - ye (r~ ]Fe] q (r~ (7) 

Thus v is the ratio of the normalized structure 
amplitude (y~) of one crystal to tha t  (yp) of the 
other, l~Iaking the appropriate transformation, using 
(5), we obtain the distribution P(v) from (6) to be 

2v~(1 + v ~) 
P(v) = [ ( I  +v~')~'--4~v] ~/~ (8) 

where ~ =  ~ (re/(r~v so tha t  al ~ + (r~ = 1. 

(b) Centrosymmetric case 
For the centrosymmetric case the expressions 

PI(]FpI) and P~([F~]; ]FpI) are given by (see part  I): 

g(2~(rg) 24 1~, P~(IF:vl ; IFPI)- 

+ exp { - 
f (IF~J 

2(r~ )2}] "(10) 
+ IF~I 

Substituting these in (2) we get 

p(q) _ 1 l o e x  p ~ ]Fp[~.|[ f [Fp]2(q-1) ~.} 

+ e x p {  ]FPI2 (q + I 2(r~ )2}] IF~IdlFP (11) 

which simplifies to 

p ( q ) _  g(rP(r--Q2 l : e x  p { ]Fp] 220~P(r~(a~v+ (r,qg.) } 

xcosh \ - ~ Q  / IFPIdIF~I. (12) 

The above integral can be evaluated (see Appendix II) 
and we obtain 

2 2 2 2 2 2(rP(re ( (r,v+ (rPq ) 
P(q) = zt[((r2v+(r~/~)~._4(r~q~]. (13) 

Corresponding to expression (8) for the non-centro- 
symmetric case, the distribution of the normalized 
quotient v takes the form 

2 (rg.(1 + v  9") 
P(v) = . (14) 

[(1 + v2)2--4(r~v] 

2.2. The case of unrelated structure amplitudes 
We might expect, guided by the result obtained 

in the case of the distribution of the product (part II), 
tha t  the distribution for the case of unrelated structure 
amplitudes should be obtainable from tha t  of the 
related case by substituting a~ = 0 in the corresponding 
expression. This, in fact, turns out to be true. Thus, 
put t ing (r~=0 ((r~=l) in expressions (6) and (10) 
we obtain the following expressions. 
Non-centrosymmetric case: 

2v 
P(v) = ~ ) +  v2,----~ " ( 1  (15) 

Centrosymmetric case: 

P(v) - 
7e(1 +v~) " 

( 1 6 )  

That  the expressions (15) and (16) are correct may 
be verified by a detailed derivation from first prin- 
ciples which, in fact, yields the above expressions. 
However, we outline here quite an independent 
derivation of equations (15) and (16), which brings 
out certain interesting relations to some well-known 
distributions in probability theory, the so called 
'gamma distributions' (Weatherburn, 1961). 

Thus if x and y are two independent gamma 
variables with parameters 1 and m then the quotient 
u= x/y has the distribution 

,U,I-I 

~(u) = B(1, m)(1Tu) z+m 0 _< u < ~  (17) 

denoted symbolically by fl2(l, m), the beta distribution 
of the second kind with parameters 1 and m (Weather- 
burn, 1961). In  this expression, B(1, m) stands for 
the well-known beta function. 

The possibility of using this result in our present 
case arises from the fact tha t  the two basic distribu- 
tions of the normalized intensity for the centro- 
symmetric and non-centrosymmetric cases can be 
described as gamma distributions with parameters 
½ and 1 respectively (Srinivasan & Subramanian, 1964). 
From this it follows at once tha t  the quotient of the 
normalized intensities, (IFlvI2/a~)/(IFp]2/a~)=t (say) 
is a fie(l, 1) distribution for the non-centrosymmetric 
case, given by 

qp(t)= l/(l  +t) 2 (18) 
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and a fl~(½, ½) distribution for the centrosymmetric 
case, given by 

1 
~(t) = g] / ( t ) ( l+t)"  (19) 

Since we are finally interested in the quotient of the 
normalized structure amplitudes, the simple trans- 
formation v~'=t in (18) and (19) yields two expressions 
which are identical with (15) and (16) respectively. 

2-3. Distribution of the reciprocal of the quotient 
In this section we show a rather  interesting relation 

tha t  exists between the distributions of the quotient 
and its reciprocal. Suppose we consider the reciprocal 
(u say) of the normalized quotient variable v, i.e. 
take u=l/v=y~/y~v. The distribution of u can be 
worked out from tha t  of v by  making the appropriate 
transformations in the expression for P(v). 

We obtain the following expressions for the related 
case. 

Non-centrosymmetric: 
2a]u(u 2 + 1) 

P ( u )  = 
[(u ~ + 1)9' _ 4u ~ a~]a/2" 

Centrosymmetric : 
2ag(u2+ 1) 

P(u) = ~[(u~+ 1)~-4~u~]" 

(20) 

(21) 

These are identical with the corresponding expressions 
(13) and (14) for P(v). This relation holds good for 
the unrelated case also, as may  be verified indepen- 
dently. 

In  contrast to the above, the distribution of the 
direct ratio of the two structure amplitudes does not 
possess this property.  Thus, if q= [Flvl/[Fel, q ' - - I /q= 
[2'e]/IF~l, it is easy to show that ,  for the non-centro- 
symmetric case, 

2 ~ q ( 1  + ~?q~) 
P(q) = [a~qa+2c~(c~_a~)q~+l]3/2 (22) 

whereas 
2 (~2 (y2-, 1 ~ (a~+q '~) 

f(q') = [q,4+2~q,~ ( ~ _  ~ ) +  ~]3~ ~. (23) 

The corresponding expressions for the centro- 
symmetric case are 

2ala~ (1 + a}q~) 
P(q) = ~ [ a ~ q 4 + 2 ~ q 2 ( ~ -  ai~)+ 1] (24) 

2 ~ l a 2 ( ~ + q  '2) 
P(q') = ~[q,a+2a~q,~.(a~_ a~)+ a~]. (25) 

This aspect of the relation between the quotient and 
its reciprocal will be discussed in detail in § 3. 

2.4. Explicit expressions for P+ 
The parameter P+ defined as the fraction of the total  

number of reflexions for which w-(12'z¢]-  IFpI)/a~v is 
positive was obtained earlier numerically by measuring 
the area of the P(w) curve lying on the positive side 

and these were tabulated in SRR. I t  is now possible 
to give an explicit expression for this quant i ty  by 
making use of the quotient distribution. Since P+ 
measures the fraction of the total number of reflexions 
for which [F~] > [Fp[ we can write 

S S: P+ = P(q)dq = P(v)dv . (26) 
1 

The definite integral can be evaluated and we give 
below the final expressions for the different eases. 

When the crystals are related, the expressions are: 

Non-centrosymmetric case : 

I P+ = ½ 1 + ~ / ( l ~ a ~ )  " (27) 

Centrosymmetric case : 

1 
P+ = [ 1 - ~  tan  -12j__l] . ~  J (28) 

When they are unrelated the results take very simple 
forms: 

Non-centrosymmetric case: 

1 
P+ = 1--+ ~--}" (29) 

Centrosymmetric case: 
2 

P+ = I - -  t an  -1 a , .  (30) 

The values of P+ obtained from the above expressions 
agree with the values given earlier (SRR). For con- 
venience they are given in the form of curves in 
Fig. 3. If we take the lower limit of integration in 
(26) as 0 we see tha t  all the expressions (27)-(30) 
reduce to unity. This only checks incidentally tha t  
the expressions for the quotient distribution for the 
different cases are all correct and represent real 
density functions. 

There is an interesting result connected with the 
integral of the quotient distribution, when this is 
represented in its normalized form. That  is, when we 

take the integral P(v) dv (which is not the same as 
1 

P+ given by expression (26)) it  is found tha t  it  always 
has the value ~ whatever be the value of a~ a M  this 
holds good whether the crystals are related or not. 

3. D i s c u s s i o n  

The most prominent feature of the distribution of 
the quotient is the marked difference in the nature  
of the curves for the related and unrelated cases 
(Fig. 1). In  this respect it has close similarity to the 
P(w) curves (part I). One contrasting feature tha t  
emerges when we compare the two functions is tha t  
while in the P(w) curves the maxima are clustered 
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P(w) since the possible fluctuations in the experimental 
curves arising out of errors in observed intensities 
may not affect the quotient as much as they do the 
difference. 

While using the quotient distribution in practice 
one may choose any one of the curves P(v), P(q) and 
P(q'). Although theoretical curves have been given 
only for the function P(v) it is not difficult to obtain 
the curves P(q) and P(q'). I t  involves only a simple 
transformation, namely q=v/~l and q'=al/v, and 
since v and 1/v have identical distributions, the 
distribution of q and q' would correspond to a com- 
pression or expansion of the P(v) curve along the 
abscissa for any given value of a~. This is illustrated 
in Fig. 2 for ~ = 0 - 8 .  The curves P(q) and P(q') have 
the advantage that  they are easily computed in 
practice since they involve the direct ratio of the two 
structure amplitudes. 

(a) p(q,) 

"4 / 0"95 1.2 

1"0 
P(v) 0.8 

0+ /,,J \/ 

0"6 0 7 5 

0"4 0.4 

0"2 

0 " 0  ~ I 
0"0 0"4 0"8 1 "2 1 "6 2-0 2"4 0"0 

v 0-0 0"4 0"8 
(b) 

Fig.  1. P r o b a b i l i t y  d i s t r i b u t i o n  of t h e  n o r m a l i z e d  q u o t i e n t  
fo r  (a) n o n - c e n t r o s y m m e t r i c  a n d  (b) c e n t r o s y m m e t r i c  case.  
Va lue  of (r12 is m a r k e d  n e a r  e a c h  c u r ve .  U n r e l a t e d  case  
c o r r e s p o n d s  to  a l  2 ---- 0. F o r  a l  9 = 1, P(v) is a d e l t a  func-  
t i on  a t  v---- 1. 

around the origin, in the P(v) curves they tend to be 
around v= 1. Thus, in the limiting case when a~= 1, 
the function P(w) is a delta function at the origin 
while P(v) is a delta function at v=  1. This is also 
physically obvious since this limiting case corresponds 
to all the JFlv['s being equal to the IFpl's. In view 
of the above property it is clear that  the function P(v) 
should also prove useful as a test for 'isomorphism' 
or 'relatedness' in practice. I t  looks as if it might 
even prove to be slightly better than the function 

P(v) 

P(q) 

I 
1 "2 1 "6 2-0 2"4 

Fig .  2. C o m p a r i s o n  of t h e  p r o b a b i l i t y  d i s t r i b u t i o n  of t h e  
n o r m a l i z e d  q u o t i e n t  v w i t h  t h a t  of t h e  d i r e c t  r a t i o s  q = 
[FN]/FpJ a n d  q'= JFp~,/[FN] fo r  t he  n o n - c e n t r o s y m m e t r i c  
case ;  (r12 ---- 0.8. 

The rather interesting property exhibited by the 
quotient distribution, namely that  v and its reciprocal 
u have identical distributions (§ 2.3), needs some 
discussion here. This result seems rather surprising 
at first since one would expect, purely from a physical 
consideration, that  the distribution of v=ylv/yP and 
u--yP/yN should show some asymmetry in view of the 
fact that  2 /> P. Although for the unrelated case an 
explanation may be found in the fact that  the ex- 
pressions for P(v) are independent of a~ this is not 
true for the related case for which a~ directly enters 

A C 1 7 - - 6 6  
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0"9 

0"8 

e+ 

0"7 

0"6 

0-5 

0"0 

_ 

_ 

_ "" - ' ~  

I I I f f 
0"2 0"4 0"6 0"8 1"0 

Fig. 3. P+ as a function of at 2 for the related (continuous line) 
and the unrelated (broken line) cases. N and C denote 
non-centrosymmetric and centrosymmetric  cases respec- 
tively. 

the expression and yet the two distributions are the 
same. 

I t  should, however, be pointed out that  the chief 
requirement for the quotient distribution to exhibit 
this symmetry property is that  the variables involved 
should be in their normalized form. This becomes clear 
from the fact that  the expected asymmetry is present 
in the distribution of q and its reciprocal q', as may 
be seen by comparing, for instance, expressions (22) 
and (23) (see also Fig. 2). 

The other property mentioned in the last section, 

namely that  the integral f?P(v)dv has a constant 
~ , 2 J L  

value of ½ for all values of a~ is also, it appears, 
a reflexion of this basic symmetry property of the 
normalized quotient. 

A P P E N D I X  I 

The integral on the right hand side of equation (3) 
can be written 

2q IF~,I~exp (o, IFPl~)Io(fllF~12)d(IF~l ~) (A1) 

where 

°~+egq~ and fl 2q (% - -  2 2 -------" G~ GQ G~ 

We may use the result (Watson, 1944, p. 386) 

f :  2a(2b)'/ '(v +~}) (A2) e-atJ~(bt)t~+ldt = (a 9 + b~)~+(3/2) V~ 

which, when we put b=ib', v=O gives 

e-~tIo (bt) t dt = (a2- b2) ~ l /~"  (A3) 

Expression (A1) then reduces to 

2q [ ~ ] ~  ~ = 2 q a ~ a ~ ( a ' + a ~ )  . (A4) 

A P P E N D I X  II  

The integral on the right hand side of equation (8) 
can be written 

1 
l : e x p  {-(kl]Fp]2)} cosh k2(]Fplg)d(IFpl 2) (A5) 

~'(, (~ p (~ Q 

where 

k l=(a~ , - t -a~19) /2~  and k2=q/a~. 

This is simple to evaluate since 

? So e -k~ ~ cosh (k2x) dx = ½ [C (k2-k0 + e -~(k~-k0] dx 
o 

= kl/(kl + k2)(kl- kD • 

Therefore our integral reduces to 

2 2 2 
~ [ ( ~  + ~gq~l~ _ 4~q~ ] . (A61 
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